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Abstract

We show that under certain circumstances\ if displacement measurements are made inside and:or outside
a body\ it is possible to use two invariants based on the energy momentum tensor to determine "to some
extent# the crack direction and length for cracks in bidimensional problems or the crack direction and area
for cracks in three dimensional problems[ This is done for a certain family of non!linear materials with a
given toughness which includes linearly elastic materials with quadratic strain energy and power law elastic[
One of the limitations is that the crack must be straight in 1D or planar in 2D[ Þ 0888 Elsevier Science Ltd[
All rights reserved[

0[ Introduction

In hydraulic fracture\ a proppant!laden viscous ~uid is injected into a wellbore and pressurized
such as to initiate the fracture of the surrounded rock "Veatch\ 0878#[ This technique has several
engineering applications\ mainly to the stimulation of oil_eld reservoirs[ To this extent\ it becomes
a useful tool if the fracture can somehow be located and directed towards the oil_eld reservoir[
The displacements of the wellbore wall as the ~uid pressure is being applied can be measured by
means of a caliper tool[ There are also other devices for measuring the deformation of a borehole
wall[ For example\ Ito and Hayashi "0885# have introduced a new device based on electrical
resistance strain gauges[ This device attached to the surface of a packer element deforms with the
borehole wall when the packer is pressed against it[ It is also possible to impede the ~uid ~ow into
the crack by the so!called technique of sleeve fracturing[ The case where the ~uid is allowed to
in_ltrate the crack and assumed to exert a constant pressure on the crack faces can also be
considered with some modi_cations[ The problem becomes that of determining the location and
extension of a stress free crack by using the knowledge of the displacements and stresses around
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the wellbore[ This is an inverse problem whose antiplane counterpart has been studied previously
"Atkinson and Aparicio\ 0883\ Aparicio and Pidcock\ 0885#[ The idea that we put forward in this
paper is based on the use of the energy momentum tensor and related invariants to determine the
inclination and length of a straight stress free crack in a two dimensional body and the inclination
and area of a planar stress free crack in a three!dimensional body[ In this problem\ it is assumed
that the material toughness is known\ displacements and stresses are known around the wellbore
and di}erentiation of the displacements around the wellbore are permitted "it may be possible to
avoid needing to di}erentiate the displacements by using a measuring technique such as that
described above#[ However\ the material can belong to a certain family of non!linear materials
which includes some of a power law type[

We note that the derivation given below is a small strain theory but with a non!linear stress
strain law[ Physically non!linear constitutive relations and small strains are appropriate for rocks
"see\ e[g[\ Jaeger and Cook\ 0868 and Fjaer et al[ 0881# and the deformation theory of plasticity[
It is possible that a method similar to the one outlined below could be applied to large strain
situations to some extent\ i[e[\ the J integral formulation is also valid for large strains and any
energy density[ However\ we have not investigated this in detail[

The path independent integrals that are related to the energy momentum tensor can be deduced
from Noether|s theorem "Noether\ 0807\ Knowles and Sternberg\ 0861# which relates symmetry
groups of a variational problem to conservation laws of the associated EulerÐLagrange equations[
It is therefore possible to construct similar path independent integrals from any given variational
problem[ The problem of hydraulic fracturing where the ~uid is allowed to ~ow inside the crack is
rather complicated\ it involves the interaction of the surrounded rock\ frequently modeled as
linearly elastic or poroelastic "Atkinson and Craster\ 0880# and a non!Newtonian ~uid which is
normally assumed to be of a power law type[ There are also additional e}ects caused by ~uid
leako} through the fracture walls when the material is assumed to be permeable[ However\
variational formulations have been constructed that take into account all these interactions "Biot
et al[\ 0875\ Advani et al[\ 0881#[

Although the results presented in this work are mainly oriented towards the problem of hydraulic
fracturing\ we point out that they can be equally useful in other kinds of problems with similar
requirements like pressure vessels\ etc[

1[ Path independent integrals for non!linear materials

In this section we establish the general formulation that will allow us to determine the angle of
inclination and length of a straight stress free crack in a two!dimensional problem or the inclination
and area of a planar stress free crack in a three!dimensional problem[ The path independent
integrals we will use are normally known as the J "or F# integral and the M integral "Eshelby\ 0869
and 0864#[ The J integral is already known to be path independent in non!linear elastic materials^
we only review here its derivation due to Eshelby "0864#[ The M integral is believed to be path
independent in materials that have a Lagrangian which is a homogeneous function of some degree
in the strain components "Budiansky and Rice\ 0862#[

Let us assume that the Lagrangian L of a non!linear elastic material is a function of the strain
tensor only oij of the form
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L � f"u\ v#\

where

u � Cijkloijokl\ v � Dijoij\

and Cijkl\ Dij are constant tensors[
The stress tensor sij is de_ned as

sij �
1L

1oij

\ "0#

thus if ui is the displacement _eld which is related to the strain tensor by oij �"ui\j¦uj\i#:1\ then the
Euler equations transform themselves into

−
1L

1ui

¦0
1L

1ui\ j1\j

� 0
1L

1oij1\j

� sij\j � 9\

which are the equilibrium equations[
To be able to construct an M integral that is path independent for some non!linear constitutive

laws\ we need that\ for a given constant c\ the following relationship holds

cL � 0
1
sijoij[ "1#

The de_nition of the M integral is stated later in this section[ Substituting "0# into the above
eqn\ we reach the conclusion that the function f must satisfy

cf"u\ v# � u
1f
1u

¦
0
1

v
1f
1v

\

whose general solution is

F0
f"u\ v#

uc
\
v1

u 1� 9[ "2#

If c � 0 and F"x\ y# � x−0:1\ eqn "2# will give us the Lagrangian of a linear anisotropic elastic
material

L � f"u\ v# � 0
1
Cijkloijokl[

On the other hand\ if Cijkl � "dikdjl¦dildjk#:1\ Dij � dij\ c � a¦0 and
F "x\ y# � x−Go:"a¦0#−loy:1\ we have the following Lagrangian

L � Ga0
GoG
a¦0

¦
loo

1
kk

1 1
where G � oijoij\ which corresponds to the following non!linear constitutive law

sij � 01G¦
alo1

kk

G 1oij¦lokkdij\
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where G � GoGa and l � loGa are variable elastic moduli[ For a � 9\ the above eqn transforms
itself into the constitutive law of a linear isotropic elastic material[

We de_ne the energy momentum!tensor as

Pij � Ldij−skjuk\i[

It can be easily proved that Pij\j � 9 and therefore the following integral is path independent

Ji � gG
PijnjdG[

In two dimensions\ the J0 integral will vanish along a horizontal line where n0 � s01 � s11 � 9
and the J1 integral will vanish along a vertical line where n1 � s00 � s01 � 9[ In three dimensions\
the J0 integral will vanish on stress free planes orthogonal to the x1 or x2 axes\ the J1 integral will
vanish on stress free planes orthogonal to the x0 or x2 axes and the J2 integral will vanish on stress
free planes orthogonal to the x0 or x1 axes[

The M integral is de_ned as

M � gG$xiPij−0
N−1c

1c 1sijui%njdG\

where N is the number of dimensions "1 or 2# and c the constant introduced in "1#[ It is a
straightforward procedure to prove that

$xiPij−0
N−1c

1c 1sijui%\j

� 9

by taking into account the relationship "1#[
In two dimensions\ the M integral vanishes along stress free lines x0 � 9 or x1 � 9 "the coordinate

axes#[ In three dimensions\ the M integral vanishes on stress free planes x0 � 9\ x1 � 9 or x2 � 9[

2[ Determination of the stress tensor on the boundary

The technique that we are proposing in this paper assumes the knowledge of both displacements
and tractions on the "known# boundary to allow us to determine certain characteristics of the
stress free crack[ In the case of hydraulic "sleeve# fracturing of a wellbore\ the displacements can
be measured by means of a caliper tool\ as was already discussed in the Introduction\ and the
normal traction is equal to the pressure of the proppant ~uid[ In this section\ we brie~y comment
on the determination of the whole stress tensor on the boundary using the data previously
mentioned[

Let us consider a point on the boundary and de_ne a system of reference where the z axis is
normal to the boundary and the x and y axes are tangent to the boundary at the point we are
studying[ Since the tractions are known at that point\ the components szz\ syz and sxz of the stress
tensor are known\ for example\ in the case of hydraulic fracturing\ szz � −p and sxz � syz � 9\
where p is the pressure of the proppant ~uid[ On the other hand\ we also know the displacements
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around the boundary and we have established that they must be determined with su.cient accuracy
as to allow us to di}erentiate them numerically[ This means that we know all the derivatives 1ui:1x
and 1ui:1y where i � x\ y\ z[

Equation "0# allows us to write the components of the stress tensor in terms of the derivatives
of the displacements and the elastic constants only[ Since we know the values of three of these
stress tensor components\ we have enough equations to determine the three unknown derivatives
of the displacements "1ui:1z# and therefore we can determine the remaining components of the
stress tensor once these derivatives are known[

3[ Two!dimensional crack detection

It is well known "Eshelby\ 0869# that the work done by the material against the cohesive forces
near the crack tip to advance the crack a quantity du is equal to Ji"Co#dui as o : 9\ where Ji"Co# is
the Ji integral evaluated with the normal pointing outwards around a circular curve Co of radius o

and centered at the crack tip[ If m is a unit vector tangent to the crack at its tip and pointing to
the direction of advance\ then\ as o : 9\ the number Ji"Co#mi will give us the work done by the
material against the cohesive forces near the crack tip per unit of crack advance or ener`y release
rate[ For the crack to propagate\ the energy release rate must be equal to some critical energy
release rate Gcr which is related to the material toughness\ a material property which is assumed to
be isotropic and known in this work[ In summary\ we have

lim
o:9

Ji"Co#mi � Gcr[

This implies that Ji is of the form

lim
o:9

Ji"Co# � Gijmj[ "3#

The tensor Gij is given by

$
G00 G01

G10 G11%� $
Gcr G?

−G? Gcr%\
where G? is some _xed value[ This holds in any cartesian system of coordinates[

In a linearly elastic isotropic material\ the components of the energy release rate tensor Gij and
the stress intensity factors for modes I and II "KI and KII# are related as

G00 � G11 �
l¦1G

3G"l¦G#
"K1

I ¦K1
II#

G01 � −G10 �
l¦1G

3G"l¦G#
"1KIKII#[
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Fig[ 0[ Straight bidimensional crack coming from the cross section of a wellbore at an angle a with respect to the
horizontal[

In Fig[ 0\ a stress free crack inclined an angle a with respect to the horizontal is being propagated
from a wellbore[ In a cartesian system of coordinates y0y1 where y0 is directed along the crack\ we
will have that Jy

0 vanishes along the crack and gives us the critical energy release rate Gcr when the
integral is carried out with the normal pointing outwards along a small circle that surrounds the
crack tip[ Since Jy

0 is path!independent\ we have

Gcr � gH

Py
0jn

y
j ds � Jy

0"H#\ "4#

where the integral is carried out with the normal pointing inwards around the wellbore H "Jy
0"H#

means the integral Jy
0 along H#[ We are assuming that there are no stresses at in_nity[ By expressing

the involved quantities in the horizontal!vertical cartesian system of reference x0x1\ we have

Jy
0"H# � Jx

0"H# cos a¦Jx
1"H# sin a[

Substituting the above eqn into "4# we get

Gcr � Jx
0"H# cos a¦Jx

1"H# sin a[ "5#

Notice that although the integrals Jx
i do not necessarily vanish along an inclined stress free

crack\ eqn "5# is still valid[
The crack|s inclination can be determined from eqn "5# as

a � arcsin 0
Gcr

zJx
0"H#1¦Jx

1"H#11−arctan 0
Jx

0"H#

Jx
1"H#1[ "6#

In order to determine the crack|s length\ we study the value of the M integral as it is carried out
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with the normal pointing outwards around a small circle Co of radius o and centered at the crack
tip[

M"Co# � gCo
$xiPij−0

0−c
c 1sijui%nj ds

� gCo
$"xi−xc

i #Pij−0
0−c

c 1sijui%njds¦xc
i gCo

Pijnj ds\

where xc
i is the value of xi evaluated at the crack tip[ The _rst integral vanishes as o : 9^ therefore

we have

lim
o:9

M"Co# � xc
i lim
o:9 gCo

Pijnjds � xc
i Gijmj\ "7#

where eqn "3# has been used in the last step[ In the y0y1 system of coordinates mentioned above\
we have that

M"H# � lim
o:9

M"Co# � yc
0Gcr

and therefore

yc
0 �

M"H#
Gcr

[

The inclination of a crack in a two!dimensional problem of hydraulic fracturing\ where the ~uid
is allowed to in_ltrate the crack and exert a constant and known pressure on the crack faces\ can
also be determined using the same technique\ since an integral of the term s11u1\0 along the crack
faces on y0 can be calculated in terms of the crack opening displacement at the beginning of the
crack and the ~uid pressure[ However\ the length of the crack cannot be determined using the M
integral[

4[ Three!dimensional crack detection

In this section\ we consider the problem of determining the orientation in space and area of a
planar crack of arbitrary shape which has been initiated from a wellbore[ We assume again that
there are no stresses at in_nity and knowledge of the stress tensor and displacement vector _elds
are available on the wellbore walls and that the energy release rate per unit of crack front|s length
`cr is constant and known[ We consider two cartesian systems of coordinates x0x1x2 and y0y1y2

which are positive oriented "e0×e1 � e2# and positioned as follows] Both systems have their origins
at one of the ends of the crack opening on the wellbore wall^ x2 is vertical and pointing upwards^
x0 is horizontal and pointing towards a prescribed direction\ for example orthogonal to the wellbore
wall if the wellbore is vertical^ y1 joins both ends of the crack opening and y0 is contained on the
crack plane and points away from the wellbore[ The orientation of the crack plane with respect to
the system of coordinates x0x1x2 can be described with two angles a and b which are de_ned as
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follows] Let us consider a horizontal planar crack such that both systems of coordinates x0x1x2

and y0y1y2 coincide\ then we rotate the system y0y1y2 around the x0 axis an angle a " following the
right hand rule#[ Thus a gives us the inclination of the crack opening with respect to the horizontal[
Finally\ we rotate the system y0y1y2 an angle b around the y1 axis^ therefore b gives us the deviation
of the crack plane with respect to a prescribed direction[ This transformation of coordinates can
be written as

yi � aijxj\

where aij is the cosine of the angle formed by the axes yi and xj and\ as a function of a and b is
given by

&
a00 a01 a02

a10 a11 a12

a20 a21 a22
'� &

cos b sin a sin b −cos a sin b

9 cos a sin a

sin b −sin a cos b cos a cos b '[
Let So be a cylinder of a small radius o that goes along the crack front L and has a cross section

Co\ then

Jy
i "So# � gSo

Py
ijn

y
j ds ½ gL gCo

PijnjdscdsL\ "8#

as o : 9[
From the two!dimensional analog "3#\ we can write that

lim
o:9 gCo

Pijnjdsc � `ijmj\ "09#

where m is a unit vector contained in the crack plane\ normal to the crack front and pointing
towards the direction of crack advance and `ij is a tensor whose components are] `00 � `11 � `cr

and `01 � −`10\ the other components are not relevant since m is orthogonal to the y2 axis and
Jy

2 does not necessarily vanish on the y0y1 plane[ This form of the tensor `ij holds in any cartesian
system of coordinates whose third axis is parallel to y2[ Substituting "09# into "8# we have

lim
o:9

Jy
i "So# � gL

`ijmjdsL[

Tracing L anticlockwise "seen from the positive part of y2#\ we have that

lim
o:9

Jy
i "So# � `i0 gL

dy1−`i1 gL

dy0 � `i0l\ "00#

where l is the straight line distance between the two ends of the crack opening[ Evaluating "00# for
i � 0\ using the facts that Jy

0 is path independent and vanishes on the y0y1 plane and expressing it
in the x0x1x2 coordinates\ we arrive at

l`cr � Jx
0"H# cos b¦Jx

1"H# sin b sin a−Jx
2"H# sin b cos a\

where H is the wellbore with the normal pointing inwards plus the Earth|s surface with the normal
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pointing upwards[ We are again assuming zero stresses at in_nity[ Since displacements are known
around the wellbore\ we assume that the numbers l and a can be measured experimentally\ therefore
the above equation allows us to determine the crack plane|s deviation b

b � arcsin 0
l`cr

zJx
0"H#1¦"Jx

1"H# sin a−Jx
2"H# cos a#11−arctan0

Jx
0"H#

Jx
1"H# sin a−Jx

2"H# cos a1[
In order to determine the area of the crack surface\ we consider the M integral[ Following a

similar argument as that for the J integral\ the value of the M integral on a small cylinder So which
surrounds the crack front is

M"So#½ gL gCo
$yiP

y
ij−0

2−1c
1c 1sy

iju
y
i %ny

j dscdsL

as o : 9 and\ with a similar analysis to that from which we deduced eqn "7#\ we have

lim
o:9 gCo

$yiP
y
ij−0

2−1c
1c 1sy

iju
y
i %ny

j dsc � yc
i `ijmj\

therefore

lim
o:9

M"So# � gL

yi`ijmjdsL � `cr gL

"y0dy1−y1dy0#¦`10 gL

"y0dy0¦y1dy1# � 1A`cr¦
l1`10

1
\

where the integral along the crack front L is carried out anticlockwise "seen from the positive side
of the y2 axis# and A is the area of the crack surface\ which is the area of the section of the crack
plane limited by the crack front and a straight line that joins the two ends of the crack opening[
The value of `10 can be determined from eqn "00#[ After some arrangements\ we _nd the following
formula for the area A

A �
M"H#−

l
1

"Jx
1"H# cos a¦Jx

2"H# sin a#

1`cr

[

5[ Conclusion

In this work\ a method has been established that allows us to determine the inclination and
length of a stress free straight crack in bidimensional problems or the inclination and area of a
stress free planar crack of arbitrary shape in three dimensional problems[ The method is valid for
some non!linear materials "the J integral formulation is valid for any energy density function and
that involving the M integral for stress!strain laws whose Lagrangian is a homogeneous function
of some degree in the strain components# and mixed mode loading and requires knowledge of
stresses and displacements on the body surface "the wellbore and Earth|s surface# and the value of
the critical energy release rate per unit of crack front|s length necessary for the crack to propagate[
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This method has special applications in hydraulic fracturing but can also be used in other kind of
problems like pressure vessels\ etc[

The technique is based on the application of two types of path independent integral that are
derived from variational principles[ The path independent integrals used in this method vanish
along the stress free crack and are supposed to be completely determined on the body surface[
This means that the complete stress tensor and displacement vector _elds must be known on the
body surface[ This is possible if both surface tractions and displacements are known and numerical
di}erentiation of the displacements is permitted within a reasonable degree of accuracy[

In the particular case of hydraulic fracturing\ the method presented in this work can be used to
determine the inclination and area of stress free planar crack[ Since the crack is assumed to be
stress free\ the ~uid must not be allowed to ~ow inside the crack[ This could be achieved by means
of a technique called sleeve fracturing[ The material can be modeled as a non!linear elastoplastic
material of a power law type[ The displacement inside the wellbore can be measured by means of
a caliper tool and the value of the stress tensor and displacement vector _elds on the Earth|s
surface can be taken from an analytic unfractured model "a pressurized vertical wellbore in a stress
free half space for example# under the principle that the e}ects of the fracture are negligible on the
Earth|s surface[
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